Science

Scientists are studying underwater topography, tides and cool currents to find places where threatened marine species might find refuge from climate change. By Richard A. Lovett.

How scientists hope to preserve endangered marine life

The world’s longest sea animal, the siphonophore, measuring 46 metres, was discovered in Ningaloo Canyons, off the coast of Western Australia, by an expedition of marine scientists.
The world’s longest sea animal, the siphonophore, measuring 46 metres, was discovered in Ningaloo Canyons, off the coast of Western Australia, by an expedition of marine scientists.
Credit: Schmidt Ocean Institute / Reuters

Two years ago, scientists studying the seas surrounding Australia made headlines when they discovered the world’s longest sea animal in the depths offshore from Western Australia: a threadlike creature called a siphonophore, measuring 46 metres from tip to tail. It was a stunning find, but buried in the excitement was the fact that ocean scientists were also making important discoveries about how Australia’s iconic marine parks will fare in a future where global warming continues to intensify.

The findings are mixed. There is no doubt climate change will be hard on the Great Barrier Reef and other ecological treasures. But some areas may fare better than others, says Chaojiao Sun, a physical oceanographer with CSIRO in Crawley, Western Australia. These areas, she says, may provide climate refugiums in which organisms decimated elsewhere can survive and return in the more distant future.

In the ocean, climate refugiums are places where the waters are cooler than in surrounding areas that may be becoming increasingly uninhabitable. Not only could this preserve species living in these areas from extinction, but these refugiums could provide habitats from which the surviving organisms might some day emerge and replenish the rest of the reef.

Similar refugiums exist on land, but there, the escape route from warming is usually by moving upward, or poleward. In the ocean, Sun told the 2022 Ocean Sciences Meeting in February, the places where climate refugiums might occur are those with upwellings of cold water from below. “Even though the water column is heating up,” she says, “below the surface layer the heating is slower. So, when the upwelling happens, the deeper water is still much cooler.”

“The refugium areas may only exist for a few decades before global warming overwhelms the whole region, therefore it is important to take protective action now,” Sun says.

That makes it a priority to protect such areas from other threats, such as sediment runoff, pollution, invasive species, overfishing, dredging, and pressures from commercial shipping traffic. But that can only be done if scientists and refuge managers know what areas to protect. That way, Sun says, “We can strategically target interventions to reduce manageable stressors in the refugium areas.”

Unfortunately, she says, when her team catalogued areas where the Great Barrier Reef experienced coral bleaching events in recent years and compared them with those in which bleaching hadn’t occurred, it became apparent that many of the best climate refugium candidates weren’t even within Great Barrier Reef Marine Park.

That oversight, she says, appears to come from the fact that the factors that produce such refugiums are very site specific. Current climate models or low resolution ocean models, she says, aren’t sophisticated enough to take into account important local features, such as the interaction of complex reef topography with tides, which alter the flow of water around the reef and “pump” cool water up from below. However, she says, “any high-resolution model can certainly resolve tides and simulate upwelling due to tides”.

Figuring out the areas in which this is most likely to produce climate refugiums, she says, may be critical to protecting the Great Barrier Reef and helping it to recover, when –or if – global warming is eventually abated.

It is also possible, she and her colleagues say, that protecting these refugiums may give their denizens time to adapt to warmer temperatures, allowing them to survive even if climate control measures prove less than optimally effective. There’s certainly no harm in trying.

In Ashmore Reef Marine Park in the Timor Sea between Broome, Western Australia, and the Indonesian island of Rote, a team of scientists is looking at the possibility of marine life surviving at greater depths.

The Timor Sea is an arm of the Indian Ocean, and one of the sad facts of global warming is that sea-surface temperatures in the Indian Ocean are rising 50 per cent faster than the global average, according to Emma Bonanno of the University of Maryland in the United States. That means climate change in Australia’s western and north-western waters is proceeding considerably faster than on its eastern shore – not a good thing.

Not that the news is entirely bleak. Findings from Ashmore Reef, says Amy Carmignani of Perth’s Curtin University, show that coral are remarkably adapted to survive at potentially cooler depths, even without the benefit of upwellings from below.

Her results were limited and preliminary, but identified that corals (which are technically animals but have a symbiotic relationship with photosynthetic algae that live within their tissues) were able to photosynthesise at depths as low as 60 plus metres, where the light intensity was only 1/200th that at the surface. “This is quite remarkable,” she said.

The corals did this, she added, by becoming more flattened (thereby exposing more area to what little light was available) and by increasing the distance between individual polyps, thereby reducing competition among them. They also produced more photosynthetic pigment and enhanced their skeletal reflective surfaces in order to magnify the value of what little sunlight was available by reflecting as much as possible into those pigments.

The bottom line, Carmignani says, is that deep, low-light environments might provide another type of refugium in which corals can adapt and survive.

Meanwhile, a more urgent need is to figure out how to predict marine heatwaves. Marine heatwaves are events in which the sea-surface temperature warms up and stays warm for days, weeks or even months at a time. That makes them more damaging than the slow increase in average sea-surface temperatures, because, just like heatwaves on land, they can be intense and deadly.

On land, heatwaves can stress ecosystems, exacerbate drought, fuel bushfires and, according to one recent study, are the greatest natural hazard to humans in all of Australia.

In the ocean, marine heatwaves can bleach coral, kill kelp and damage fisheries and marine ecosystems. The most recent example, says Claire Spillman, a research scientist at the Bureau of Meteorology, Melbourne, was a 2021 heatwave that raised water temperatures offshore from Western Australia by 2.5-3 degrees Celsius for two months in December and January. That heatwave only ended when a large tropical storm brought heavy wind and rain, churning up cooler water from below and returning sea-surface temperatures to some semblance of normality.

These Indian Ocean heatwaves, Spillman told the Ocean Sciences Meeting, originate far from Australia, or even from the Indian Ocean. Instead, they are linked to the El Niño–La Niña oscillation, which affects the surface temperatures of waters in the eastern Pacific, closer to South America.

In La Niña years, relatively cool waters offshore from South America produce a return flow of warm water through the channels between the islands of Indonesia. This water then moves down along the coast of Western Australia producing marine heatwaves like the one seen in 2021.

Last year was a La Niña year. So too is 2022. Scientists are looking carefully at the next few weeks, as the 2022 season wanes, and hoping for no additional marine heating. But the more accurately scientists can learn to forecast such heatwaves, whenever they come, the better prepared people will be to deal with them. 

This piece was produced in collaboration with cosmosmagazine.com.

This article was first published in the print edition of The Saturday Paper on April 9, 2022 as "Seeking refuge".

A free press is one you pay for. Now is the time to subscribe.

Richard A. Lovett is a science writer, author and marathon coach in Portland, Oregon.

Sharing credit ×

Share this article, without restrictions.

You’ve shared all of your credits for this month. They will refresh on June 1. If you would like to share more, you can buy a gift subscription for a friend.
Loading...